
ASM Simplification Rules
At each step, the ASM finds the left-most ready subexpression in the workspace

• An expression involving a primitive operator (eg “+”) is ready if all its arguments are values
– Expression is replaced with its result

• A let expression let x : t = e in body is ready if e is a value
– A new binding for x to e is added at the end of the stack
– let expression is replaced with body in the workspace

• A variable is always ready
– The variable is replaced by its binding in the stack, searching from the most recent bindings

• A conditional expression if e then e1 else e2 is ready if e is either true or false
– The workspace is replaced with either e1 (if e is True) or e2 (if e is False)

• A constructor expression (record, tuple, defined type) is ready if all its arguments are values
– Storage space is created in the heap
– Expression is replaced with a pointer to the storage

• A pattern match expression is ready if the item to be matched is a value
– Find the first pattern that matches and replace the expression with the corresponding result

• A fun expression is always ready
• A function call is ready if the function and all of its arguments are values

– The current workspace is pushed to the stack with an open space for the return value
– Function argument bindings are pushed to the stack
– The function body is placed in the workspace

• If the workspace contains a single value, and there is unfinished work on the stack
– Place the current workspace value into the most recent unfinished work on the stack in the space left open
– Remove all bindings on the stack up to the unfinished work
– Move the contents of the unfinished work back into the workspace

CSC 151

	ASM Simplification Rules

